Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Antimicrob Chemother ; 78(7): 1586-1598, 2023 07 05.
Article in English | MEDLINE | ID: covidwho-2316893

ABSTRACT

BACKGROUND: The role of molnupiravir for coronavirus disease 2019 (COVID-19) treatment is unclear. METHODS: We conducted a systematic review until 1 November 2022 searching for randomized controlled trials (RCTs) involving COVID-19 patients comparing molnupiravir [±standard of care (SoC)] versus SoC and/or placebo. Data were pooled in random-effects meta-analyses. Certainty of evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS: Nine RCTs were identified, eight investigated outpatients (29 254 participants) and one inpatients (304 participants). Compared with placebo/SoC, molnupiravir does not reduce mortality [risk ratio (RR) 0.27, 95% CI 0.07-1.02, high-certainty evidence] and probably does not reduce the risk for 'hospitalization or death' (RR 0.81, 95% CI 0.55-1.20, moderate-certainty evidence) by Day 28 in COVID-19 outpatients. We are uncertain whether molnupiravir increases symptom resolution by Day 14 (RR 1.20, 95% CI 1.02-1.41, very-low-certainty evidence) but it may make no difference by Day 28 (RR 1.05, 95% CI 0.92-1.19, low-certainty evidence). In inpatients, molnupiravir may increase mortality by Day 28 compared with placebo (RR 3.78, 95% CI 0.50-28.82, low-certainty evidence). There is little to no difference in serious adverse and adverse events during the study period in COVID-19 inpatients/outpatients treated with molnupiravir compared with placebo/SoC (moderate- to high-certainty evidence). CONCLUSIONS: In a predominantly immunized population of COVID-19 outpatients, molnupiravir has no effect on mortality, probably none on 'hospitalization or death' and effects on symptom resolution are uncertain. Molnupiravir was safe during the study period in outpatients although a potential increase in inpatient mortality requires careful monitoring in ongoing clinical research. Our analysis does not support routine use of molnupiravir for COVID-19 treatment in immunocompetent individuals.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
2.
Res Synth Methods ; 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2320389

ABSTRACT

Evidence synthesis findings depend on the assumption that the included studies follow good clinical practice and results are not fabricated or false. Studies which are problematic due to scientific misconduct, poor research practice, or honest error may distort evidence synthesis findings. Authors of evidence synthesis need transparent mechanisms to identify and manage problematic studies to avoid misleading findings. As evidence synthesis authors of the Cochrane COVID-19 review on ivermectin, we identified many problematic studies in terms of research integrity and regulatory compliance. Through iterative discussion, we developed a Research Integrity Assessment (RIA) tool for randomized controlled trials (RCTs) for the update of this Cochrane review. In this paper, we explain the rationale and application of the RIA tool in this case study. RIA assesses six study criteria: study retraction, prospective trial registration, adequate ethics approval, author group, plausibility of methods (e.g., randomization), and plausibility of study results. RIA was used in the Cochrane review as part of the eligibility check during screening of potentially eligible studies. Problematic studies were excluded and studies with open questions were held in awaiting classification until clarified. RIA decisions were made independently by two authors and reported transparently. Using the RIA tool resulted in the exclusion of >40% of studies in the first update of the review. RIA is a complementary tool prior to assessing 'Risk of Bias' aiming to establish the integrity and authenticity of studies. RIA provides a platform for urgent development of a standard approach to identifying and managing problematic studies. This article is protected by copyright. All rights reserved.

3.
The Cochrane database of systematic reviews ; 2022(4), 2022.
Article in English | EuropePMC | ID: covidwho-2302443

ABSTRACT

Objectives This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and safety of nirmatrelvir/ritonavir (Paxlovid®) plus standard of care compared to standard of care with or without placebo, or any other proven intervention for treating COVID‐19 and for preventing SARS‐CoV‐2 infection.

4.
Cochrane Database Syst Rev ; 9: CD015395, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2278088

ABSTRACT

BACKGROUND: Oral nirmatrelvir/ritonavir (Paxlovid®) aims to avoid severe COVID-19 in asymptomatic people or those with mild symptoms, thereby decreasing hospitalization and death. Due to its novelty, there are currently few published study results. It remains to be evaluated for which indications and patient populations the drug is suitable.  OBJECTIVES: To assess the efficacy and safety of nirmatrelvir/ritonavir (Paxlovid®) plus standard of care compared to standard of care with or without placebo, or any other intervention for treating COVID-19 and for preventing SARS-CoV-2 infection. To explore equity aspects in subgroup analyses. To keep up to date with the evolving evidence base using a living systematic review (LSR) approach and make new relevant studies available to readers in-between publication of review updates. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, Scopus, and WHO COVID-19 Global literature on coronavirus disease database, identifying completed and ongoing studies without language restrictions and incorporating studies up to 11 July 2022.  This is a LSR. We conduct monthly update searches that are being made publicly available on the open science framework (OSF) platform. SELECTION CRITERIA: Studies were eligible if they were randomized controlled trials (RCTs) comparing nirmatrelvir/ritonavir plus standard of care with standard of care with or without placebo, or any other intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity or treatment setting, and for prevention of SARS-CoV-2 infection. We screened all studies for research integrity. Studies were ineligible if they had been retracted, or if they were not prospectively registered including appropriate ethics approval. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology and used the Cochrane risk of bias 2 tool. We rated the certainty of evidence using the GRADE approach for the following outcomes: 1. to treat outpatients with mild COVID-19; 2. to treat inpatients with moderate-to-severe COVID-19: mortality, clinical worsening or improvement, quality of life, (serious) adverse events, and viral clearance; 3. to prevent SARS-CoV-2 infection in post-exposure prophylaxis (PEP); and 4. pre-exposure prophylaxis (PrEP) scenarios: SARS-CoV-2 infection, development of COVID-19 symptoms, mortality, admission to hospital, quality of life, and (serious) adverse events. We explored inequity by subgroup analysis for elderly people, socially-disadvantaged people with comorbidities, populations from LICs and LMICs, and people from different ethnic and racial backgrounds. MAIN RESULTS: As of 11 July 2022, we included one RCT with 2246 participants in outpatient settings with mild symptomatic COVID-19 comparing nirmatrelvir/ritonavir plus standard of care with standard of care plus placebo. Trial participants were unvaccinated, without previous confirmed SARS-CoV-2 infection, had a symptom onset of no more than five days before randomization, and were at high risk for progression to severe disease. Prohibited prior or concomitant therapies included medications highly dependent on CYP3A4 for clearance and CYP3A4 inducers.  We identified eight ongoing studies. Nirmatrelvir/ritonavir for treating COVID-19 in outpatient settings with asymptomatic or mild disease For the specific population of unvaccinated, high-risk patients nirmatrelvir/ritonavir plus standard of care compared to standard of care plus placebo may reduce all-cause mortality at 28 days (risk ratio (RR) 0.04, 95% confidence interval (CI) 0.00 to 0.68; 1 study, 2224 participants; estimated absolute effect: 11 deaths per 1000 people receiving placebo compared to 0 deaths per 1000 people receiving nirmatrelvir/ritonavir; low-certainty evidence, and admission to hospital or death within 28 days (RR 0.13, 95% CI 0.07 to 0.27; 1 study, 2224 participants; estimated absolute effect: 61 admissions or deaths per 1000 people receiving placebo compared to eight admissions or deaths per 1000 people receiving nirmatrelvir/ritonavir; low-certainty evidence). Nirmatrelvir/ritonavir plus standard of care may reduce serious adverse events during the study period compared to standard of care plus placebo (RR 0.24, 95% CI 0.15 to 0.41; 1 study, 2224 participants; low-certainty evidence). Nirmatrelvir/ritonavir plus standard of care probably has little or no effect on treatment-emergent adverse events (RR 0.95, 95% CI 0.82 to 1.10; 1 study, 2224 participants; moderate-certainty evidence), and probably increases treatment-related adverse events such as dysgeusia and diarrhoea during the study period compared to standard of care plus placebo (RR 2.06, 95% CI 1.44 to 2.95; 1 study, 2224 participants; moderate-certainty evidence). Nirmatrelvir/ritonavir plus standard of care probably decreases discontinuation of study drug due to adverse events compared to standard of care plus placebo (RR 0.49, 95% CI 0.30 to 0.80; 1 study, 2224 participants; moderate-certainty evidence). No study results were identified for improvement of clinical status, quality of life, and viral clearance.  Subgroup analyses for equity Most study participants were younger than 65 years (87.1% of the : modified intention to treat (mITT1) population with 2085 participants), of white ethnicity (71.5%), and were from UMICs or HICs (92.1% of study centres). Data on comorbidities were insufficient.  The outcome 'admission to hospital or death' was investigated for equity: age (< 65 years versus ≥ 65 years) and ethnicity (Asian versus Black versus White versus others). There was no difference between subgroups of age. The effects favoured treatment with nirmatrelvir/ritonavir for the White ethnic group. Estimated effects in the other ethnic groups included the line of no effect (RR = 1). No subgroups were reported for comorbidity status and World Bank country classification by income level. No subgroups were reported for other outcomes. Nirmatrelvir/ritonavir for treating COVID-19 in inpatient settings with moderate to severe disease No studies available. Nirmatrelvir/ritonavir for preventing SARS-CoV-2 infection (PrEP and PEP) No studies available. AUTHORS' CONCLUSIONS: There is low-certainty evidence that nirmatrelvir/ritonavir reduces the risk of all-cause mortality and hospital admission or death based on one trial investigating unvaccinated COVID-19 participants without previous infection that were at high risk and with symptom onset of no more than five days. There is low- to moderate-certainty evidence that nirmatrelvir/ritonavir is safe in people without prior or concomitant therapies including medications highly dependent on CYP3A4. Regarding equity aspects, except for ethnicity, no differences in effect size and direction were identified. No evidence is available on nirmatrelvir/ritonavir to treat hospitalized people with COVID-19 and to prevent a SARS-CoV-2 infection. We will continually update our search and make search results available on OSF.


Subject(s)
COVID-19 Drug Treatment , Aged , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inducers , Humans , Ritonavir/therapeutic use , SARS-CoV-2
5.
BMJ Evid Based Med ; 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2108267

ABSTRACT

Living systematic reviews (LSRs) are an increasingly common approach to keeping reviews up to date, in which new relevant studies are incorporated as they become available, so as to inform healthcare policy and practice in a timely manner. While journal publishers have been exploring the publication of LSRs using different updating and publishing approaches, readers cannot currently assess if the evidence underpinning a published LSR is up to date, as neither the search details, the selection process, nor the list of identified studies is made available between the publication of updates. We describe a new method to transparently report the living evidence surveillance process that occurs between published LSR versions. We use the example of the living Cochrane Review on nirmatrelvir combined with ritonavir (Paxlovid) for preventing and treating COVID-19 to illustrate how this can work in practice. We created a publicly accessible spreadsheet on the Open Science Framework platform, linking to the living Cochrane Review, that details the search and study selection process, enabling readers to track the progress of eligible ongoing or completed studies. Further automation of the evidence surveillance process should be explored.

6.
Thromb Res ; 219: 40-48, 2022 11.
Article in English | MEDLINE | ID: covidwho-2008145

ABSTRACT

BACKGROUND: Thromboembolic events are common complications of COVID-19. Clinical study results on safety and efficacy of anticoagulation in COVID-19 are controversial. MATERIAL AND METHODS: This report updates our systematic review and random-effects meta-analysis on randomized controlled trials (RCTs) comparing standard prophylactic anticoagulation and intermediate or therapeutic anticoagulation in COVID-19 patients. We searched eligible studies for the update up to 4 February 2022 by weekly monitoring of RCTs in the Cochrane COVID-19 Study Register. Certainty of evidence was assessed using GRADE (Grading of Recommendations Assessment, Development and Evaluation). RESULTS: For this update we included five new trials; a total of 13 RCTs with 7364 patients. Certainty of evidence was very low to low. We are uncertain whether low-dose prophylactic anticoagulation is favoured over placebo or no anticoagulation in the outpatient- or post-discharge-setting. In hospitalized patients with moderate and severe COVID-19, intermediate-dose anticoagulation may have little or no effect on thrombotic events or death (RR 1.03, 95 % CI 0.86-1.24), but may increase severe bleeding non-significantly (RR 1.48, 95 % CI 0.53-4.15). Therapeutic-dose anticoagulation may decrease thrombotic events or deaths in hospitalized patients with moderate COVID-19 (RR 0.64, 95 % CI 0.38-1.07; fixed-effect model RR 0.72, 95 % CI 0.57-0.91), but may have little or no effect in patients with severe disease (RR 0.98, 95 % CI 0.86-1.12). With therapeutic-dose anticoagulation, the risk of major bleeding may increase regardless of COVID-19 severity (RR 1.78, 95 % CI 1.15-2.74). CONCLUSIONS: Hospitalized, moderately ill COVID-19 patients may benefit from therapeutic-dose anticoagulation, while critically ill patients may not. Risk of major bleeding must be considered.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Thromboembolism , Thrombosis , Anticoagulants/adverse effects , Blood Coagulation , COVID-19/complications , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Humans , Thromboembolism/drug therapy , Thromboembolism/etiology , Thromboembolism/prevention & control , Thrombosis/chemically induced , Thrombosis/etiology
7.
Dtsch Arztebl Int ; 119(19): 342-349, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-2002483

ABSTRACT

BACKGROUND: One of the purposes of outpatient treatment for COVID-19 patients is to prevent severe disease courses and hospitalization. There is a need for evidence-based recommendations to be applied in primary care and specialized outpatient settings. METHODS: This guideline was developed on the basis of publications that were retrieved by a systematic search for randomized controlled trials in the Cochrane COVID-19 trial registry. The quality of evidence was assessed with GRADE, and structured consensus generation was carried out with MAGICapp. RESULTS: Unvaccinated COVID-19 outpatients with at least one risk factor for a severe disease course may be treated in the early phase of the disease with sotrovimab, remdesivir, or nirmatrelvir/ritonavir. Molnupiravir may also be used for such patients if no other clinically appropriate treatment options are available. Immunosuppressed persons with COVID-19 who are at high risk, and whose response to vaccination is expected to be reduced, ought to be treated with sotrovimab. It should be noted, however, that the clinical efficacy of sotrovimab against infections with the omicron subtype BA.2 is uncertain at the currently used dose, as the drug has displayed reduced activity against this subtype in vitro. COVID-19 patients at risk of a severe course may be offered budesonide inhalation, according to an off-label recommendation of the German College of General Practitioners and Family Physicians (other medical societies do not recommend either for or against this treatment). Thrombo - embolism prophylaxis with low-molecular-weight heparin may be given to elderly patients or those with a pre-existing illness. No recommendation is made concerning fluvoxamine or colchicine. Acetylsalicylic acid, azithromycin, ivermectin, systemic steroids, and vitamin D should not be used for the outpatient treatment of COVID-19. CONCLUSION: Drug treatment is now available for outpatients with COVID-19 in the early phase. Nearly all of the relevant trials have been conducted in unvaccinated subjects; this needs to be kept in mind in patient selection.


Subject(s)
Ambulatory Care , COVID-19 Drug Treatment , Practice Guidelines as Topic , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Humans , Randomized Controlled Trials as Topic , Systematic Reviews as Topic , Treatment Outcome
8.
Cochrane Database Syst Rev ; 8: CD015021, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1981526

ABSTRACT

BACKGROUND: High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. OBJECTIVES: To provide an overview of the availability of existing literature on immune response and long-term clinical outcomes after COVID-19 vaccination, and to map this evidence according to the examined populations, specific vaccines, immunity parameters, and their way of determining relevant long-term outcomes and the availability of mapping between immune reactivity and relevant outcomes. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, the Web of Science Core Collection, and the World Health Organization COVID-19 Global literature on coronavirus disease on 6 December 2021.  SELECTION CRITERIA: We included studies that published results on immunity outcomes after vaccination with BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, Sputnik V or Sputnik Light, BBIBP-CorV, or CoronaVac on predefined vulnerable subgroups such as people with malignancies, transplant recipients, people undergoing renal replacement therapy, and people with immune disorders, as well as pregnant and breastfeeding women, and children. We included studies if they had at least 100 participants (not considering healthy control groups); we excluded case studies and case series. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate onto an online data extraction form. Data were represented as tables and as online maps to show the frequency of studies for each item. We mapped the data according to study design, country of participant origin, patient comorbidity subgroup, intervention, outcome domains (clinical, safety, immunogenicity), and outcomes.  MAIN RESULTS: Out of 25,452 identified records, 318 studies with a total of more than 5 million participants met our eligibility criteria and were included in the review. Participants were recruited mainly from high-income countries between January 2020 and 31 October 2021 (282/318); the majority of studies included adult participants (297/318).  Haematological malignancies were the most commonly examined comorbidity group (N = 54), followed by solid tumours (N = 47), dialysis (N = 48), kidney transplant (N = 43), and rheumatic diseases (N = 28, 17, and 15 for mixed diseases, multiple sclerosis, and inflammatory bowel disease, respectively). Thirty-one studies included pregnant or breastfeeding women. The most commonly administered vaccine was BNT162b2 (N = 283), followed by mRNA-1273 (N = 153), AZD1222 (N = 66), Ad26.COV2.S (N = 42), BBIBP-CorV (N = 15), CoronaVac (N = 14), and Sputnik V (N = 5; no studies were identified for Sputnik Light). Most studies reported outcomes after regular vaccination scheme.  The majority of studies focused on immunogenicity outcomes, especially seroconversion based on binding antibody measurements and immunoglobulin G (IgG) titres (N = 179 and 175, respectively). Adverse events and serious adverse events were reported in 126 and 54 studies, whilst SARS-CoV-2 infection irrespective of severity was reported in 80 studies. Mortality due to SARS-CoV-2 infection was reported in 36 studies. Please refer to our evidence gap maps for more detailed information. AUTHORS' CONCLUSIONS: Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.


Subject(s)
COVID-19 , Hematologic Neoplasms , Vaccines , Ad26COVS1 , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Female , Humans , Pregnancy , SARS-CoV-2 , Vaccination
9.
Cochrane Database Syst Rev ; 6: CD015017, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1898514

ABSTRACT

BACKGROUND: Ivermectin, an antiparasitic agent, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in early stages of infection. Currently, evidence on ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES: To assess the efficacy and safety of ivermectin plus standard of care compared to standard of care plus/minus placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), WHO COVID-19 Global literature on coronavirus disease, and HTA database weekly to identify completed and ongoing trials without language restrictions to 16 December 2021. Additionally, we included trials with > 1000 participants up to April 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing ivermectin to standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity or treatment setting, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms.  For this review update, we reappraised eligible trials for research integrity: only RCTs prospectively registered in a trial registry according to WHO guidelines for clinical trial registration were eligible for inclusion. DATA COLLECTION AND ANALYSIS: We assessed RCTs for bias, using the Cochrane RoB 2 tool. We used GRADE to rate the certainty of evidence for outcomes in the following settings and populations: 1) to treat inpatients with moderate-to-severe COVID-19, 2) to treat outpatients with mild COVID-19 (outcomes: mortality, clinical worsening or improvement, (serious) adverse events, quality of life, and viral clearance), and 3) to prevent SARS-CoV-2 infection (outcomes: SARS-CoV-2 infection, development of COVID-19 symptoms, admission to hospital, mortality, adverse events and quality of life). MAIN RESULTS: We excluded seven of the 14 trials included in the previous review version; six were not prospectively registered and one was non-randomized. This updated review includes 11 trials with 3409 participants investigating ivermectin plus standard of care compared to standard of care plus/minus placebo. No trial investigated ivermectin for prevention of infection or compared ivermectin to an intervention with proven efficacy. Five trials treated participants with moderate COVID-19 (inpatient settings); six treated mild COVID-19 (outpatient settings). Eight trials were double-blind and placebo-controlled, and three were open-label. We assessed around 50% of the trial results as low risk of bias. We identified 31 ongoing trials. In addition, there are 28 potentially eligible trials without publication of results, or with disparities in the reporting of the methods and results, held in 'awaiting classification' until the trial authors clarify questions upon request. Ivermectin for treating COVID-19 in inpatient settings with moderate-to-severe disease We are uncertain whether ivermectin plus standard of care compared to standard of care plus/minus placebo reduces or increases all-cause mortality at 28 days (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 3 trials, 230 participants; very low-certainty evidence); or clinical worsening, assessed by participants with new need for invasive mechanical ventilation or death at day 28 (RR 0.82, 95% CI 0.33 to 2.04; 2 trials, 118 participants; very low-certainty evidence); or serious adverse events during the trial period (RR 1.55, 95% CI 0.07 to 35.89; 2 trials, 197 participants; very low-certainty evidence). Ivermectin plus standard of care compared to standard of care plus placebo may have little or no effect on clinical improvement, assessed by the number of participants discharged alive at day 28 (RR 1.03, 95% CI 0.78 to 1.35; 1 trial, 73 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.04, 95% CI 0.61 to 1.79; 3 trials, 228 participants; low-certainty evidence); and on viral clearance at 7 days (RR 1.12, 95% CI 0.80 to 1.58; 3 trials, 231 participants; low-certainty evidence). No trial investigated quality of life at any time point. Ivermectin for treating COVID-19 in outpatient settings with asymptomatic or mild disease Ivermectin plus standard of care compared to standard of care plus/minus placebo probably has little or no effect on all-cause mortality at day 28 (RR 0.77, 95% CI 0.47 to 1.25; 6 trials, 2860 participants; moderate-certainty evidence) and little or no effect on quality of life, measured with the PROMIS Global-10 scale (physical component mean difference (MD) 0.00, 95% CI -0.98 to 0.98; and mental component MD 0.00, 95% CI -1.08 to 1.08; 1358 participants; high-certainty evidence). Ivermectin may have little or no effect on clinical worsening, assessed by admission to hospital or death within 28 days (RR 1.09, 95% CI 0.20 to 6.02; 2 trials, 590 participants; low-certainty evidence); on clinical improvement, assessed by the number of participants with all initial symptoms resolved up to 14 days (RR 0.90, 95% CI 0.60 to 1.36; 2 trials, 478 participants; low-certainty evidence); on serious adverse events (RR 2.27, 95% CI 0.62 to 8.31; 5 trials, 1502 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.24, 95% CI 0.87 to 1.76; 5 trials, 1502 participants; low-certainty evidence); and on viral clearance at day 7 compared to placebo (RR 1.01, 95% CI 0.69 to 1.48; 2 trials, 331 participants; low-certainty evidence). None of the trials reporting duration of symptoms were eligible for meta-analysis. AUTHORS' CONCLUSIONS: For outpatients, there is currently low- to high-certainty evidence that ivermectin has no beneficial effect for people with COVID-19. Based on the very low-certainty evidence for inpatients, we are still uncertain whether ivermectin prevents death or clinical worsening or increases serious adverse events, while there is low-certainty evidence that it has no beneficial effect regarding clinical improvement, viral clearance and adverse events. No evidence is available on ivermectin to prevent SARS-CoV-2 infection. In this update, certainty of evidence increased through higher quality trials including more participants. According to this review's living approach, we will continually update our search.


Subject(s)
COVID-19 , Humans , Ivermectin/adverse effects , Randomized Controlled Trials as Topic , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index
10.
The Cochrane database of systematic reviews ; 2021(4), 2021.
Article in English | EuropePMC | ID: covidwho-1801610

ABSTRACT

Objectives This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and safety of ivermectin compared to standard of care, placebo, or any other proven intervention (1) for prevention of an infection with SARS‐CoV‐2 (post‐exposure prophylaxis), and (2) for people with COVID‐19 receiving treatment as outpatients or inpatients.

11.
Rev Med Virol ; 32(5): e2342, 2022 09.
Article in English | MEDLINE | ID: covidwho-1772840

ABSTRACT

The cornerstone of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection is reverse-transcription polymerase chain reaction (RT-PCR) of viral RNA. As a surrogate assay SARS-CoV-2 RNA detection does not necessarily imply infectivity. Only virus isolation in permissive cell culture systems can indicate infectivity. Here, we review the evidence on RT-PCR performance in detecting infectious SARS-CoV-2. We searched for any studies that used RT-PCR and cell culture to determine infectious SARS-CoV-2 in respiratory samples. We assessed (i) diagnostic accuracy of RT-PCR compared to cell culture as reference test, (ii) performed meta-analysis of positive predictive values (PPV) and (iii) determined the virus isolation probabilities depending on cycle threshold (Ct) or log10 genome copies/ml using logistic regression. We included 55 studies. There is substantial statistical and clinical heterogeneity. Seven studies were included for diagnostic accuracy. Sensitivity ranged from 90% to 99% and specificity from 29% to 92%. In meta-analysis, the PPVs varied across subgroups with different sampling times after symptom onset, with 1% (95% confidence interval [CI], 0%-7%) in sampling beyond 10 days and 27% (CI, 19%-36%) to 46% (CI, 33%-60%) in subgroups that also included earlier samples. Estimates of virus isolation probability varied between 6% (CI, 0%-100%) and 50% (CI, 0%-100%) at a Ct value of 30 and between 0% (CI, 0%-22%) and 63% (CI, 0%-100%) at 5 log10 genome copies/ml. Evidence on RT-PCR performance in detecting infectious SARS-CoV-2 in respiratory samples was limited. Major limitations were heterogeneity and poor reporting. RT-PCR and cell culture protocols need further standardisation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
J Clin Med ; 11(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625725

ABSTRACT

BACKGROUND: Acute respiratory failure is the most important organ dysfunction of COVID-19 patients. While non-invasive ventilation (NIV) and high-flow nasal cannula (HFNC) oxygen are frequently used, efficacy and safety remain uncertain. Benefits and harms of awake prone positioning (APP) in COVID-19 patients are unknown. METHODS: We searched for randomized controlled trials (RCTs) comparing HFNC vs. NIV and APP vs. standard care. We meta-analyzed data for mortality, intubation rate, and safety. RESULTS: Five RCTs (2182 patients) were identified. While it remains uncertain whether HFNC compared to NIV alters mortality (RR: 0.92, 95% CI 0.65-1.33), HFNC may increase rate of intubation or death (composite endpoint; RR 1.22, 1.03-1.45). We do not know if HFNC alters risk for harm. APP compared to standard care probably decreases intubation rate (RR 0.83, 0.71-0.96) but may have little or no effect on mortality (RR: 1.08, 0.51-2.31). CONCLUSIONS: Certainty of evidence is moderate to very low. There is no compelling evidence for either HFNC or NIV, but both carry substantial risk for harm. The use of APP probably has benefits although mortality appears unaffected.

13.
J Clin Med ; 11(1)2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1580654

ABSTRACT

BACKGROUND: COVID-19 patients are at high thrombotic risk. The safety and efficacy of different anticoagulation regimens in COVID-19 patients remain unclear. METHODS: We searched for randomised controlled trials (RCTs) comparing intermediate- or therapeutic-dose anticoagulation to standard thromboprophylaxis in hospitalised patients with COVID-19 irrespective of disease severity. To assess efficacy and safety, we meta-analysed data for all-cause mortality, clinical status, thrombotic event or death, and major bleedings. RESULTS: Eight RCTs, including 5580 patients, were identified, with two comparing intermediate- and six therapeutic-dose anticoagulation to standard thromboprophylaxis. Intermediate-dose anticoagulation may have little or no effect on any thrombotic event or death (RR 1.03, 95% CI 0.86-1.24), but may increase major bleedings (RR 1.48, 95% CI 0.53-4.15) in moderate to severe COVID-19 patients. Therapeutic-dose anticoagulation may decrease any thrombotic event or death in patients with moderate COVID-19 (RR 0.64, 95% CI 0.38-1.07), but may have little or no effect in patients with severe disease (RR 0.98, 95% CI 0.86-1.12). The risk of major bleedings may increase independent of disease severity (RR 1.78, 95% CI 1.15-2.74). CONCLUSIONS: Certainty of evidence is still low. Moderately affected COVID-19 patients may benefit from therapeutic-dose anticoagulation, but the risk for bleeding is increased.

14.
Cochrane Database Syst Rev ; 10: CD015025, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1482091

ABSTRACT

BACKGROUND: The effect of antibiotics with potential antiviral and anti-inflammatory properties are being investigated in clinical trials as treatment for COVID-19. The use of antibiotics follows the intention-to-treat the viral disease and not primarily to treat bacterial co-infections of individuals with COVID-19. A thorough understanding of the current evidence regarding effectiveness and safety of antibiotics as anti-viral treatments for COVID-19 based on randomised controlled trials (RCTs) is required. OBJECTIVES: To assess the efficacy and safety of antibiotics compared to each other, no treatment, standard of care alone, placebo, or any other active intervention with proven efficacy for treatment of COVID-19 outpatients and inpatients.  SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (including MEDLINE, Embase, ClinicalTrials.gov, WHO ICTRP, medRxiv, CENTRAL), Web of Science and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 14 June 2021. SELECTION CRITERIA: RCTs were included that compared antibiotics with each other, no treatment, standard of care alone, placebo, or another proven intervention, for treatment of people with confirmed COVID-19, irrespective of disease severity, treated in the in- or outpatient settings. Co-interventions had to be the same in both study arms. We excluded studies comparing antibiotics to other pharmacological interventions with unproven efficacy. DATA COLLECTION AND ANALYSIS: We assessed risk of bias of primary outcomes using the Cochrane risk of bias tool (ROB 2) for RCTs. We used GRADE to rate the certainty of evidence for the following primary outcomes: 1. to treat inpatients with moderate to severe COVID-19: mortality, clinical worsening defined as new need for intubation or death, clinical improvement defined as being discharged alive, quality of life, adverse and serious adverse events, and cardiac arrhythmias; 2. to treat outpatients with asymptomatic or mild COVID-19: mortality, clinical worsening defined as hospital admission or death, clinical improvement defined as symptom resolution, quality of life, adverse and serious adverse events, and cardiac arrhythmias. MAIN RESULTS: We included 11 studies with 11,281 participants with an average age of 54 years investigating antibiotics compared to placebo, standard of care alone or another antibiotic. No study was found comparing antibiotics to an intervention with proven efficacy. All studies investigated azithromycin, two studies investigated other antibiotics compared to azithromycin. Seven studies investigated inpatients with moderate to severe COVID-19 and four investigated mild COVID-19 cases in outpatient settings. Eight studies had an open-label design, two were blinded with a placebo control, and one did not report on blinding. We identified 19 ongoing and 15 studies awaiting classification pending publication of results or clarification of inconsistencies. Of the 30 study results contributing to primary outcomes by included studies, 17 were assessed as overall low risk and 13 as some concerns of bias. Only studies investigating azithromycin reported data eligible for the prioritised primary outcomes. Azithromycin doses and treatment duration varied among included studies.  Azithromycin for the treatment of COVID-19 compared to placebo or standard of care alone in inpatients We are very certain that azithromycin has little or no effect on all-cause mortality at day 28 compared to standard of care alone (risk ratio (RR) 0.98; 95% confidence interval (CI) 0.90 to 1.06; 8600 participants; 4 studies; high-certainty evidence). Azithromycin probably has little or no effect on clinical worsening or death at day 28 (RR 0.95; 95% CI 0.87 to 1.03; 7311 participants; 1 study; moderate-certainty evidence), on clinical improvement at day 28 (RR 0.96; 95% CI 0.84 to 1.11; 8172 participants; 3 studies; moderate-certainty evidence), on serious adverse events during the study period (RR 1.11; 95% CI 0.89 to 1.40; 794 participants; 4 studies; moderate-certainty evidence), and cardiac arrhythmias during the study period (RR 0.92; 95% CI 0.73 to 1.15; 7865 participants; 4 studies; moderate-certainty evidence) compared to placebo or standard of care alone. Azithromycin may increase any adverse events slightly during the study period (RR 1.20; 95% CI 0.92 to 1.57; 355 participants; 3 studies; low-certainty evidence) compared to standard of care alone. No study reported quality of life up to 28 days. Azithromycin for the treatment of COVID-19 compared to placebo or standard of care alone in outpatients Azithromycin may have little or no effect compared to placebo or standard of care alone on all-cause mortality at day 28 (RR 1.00 ; 95% CI 0.06 to 15.69; 876 participants; 3 studies; low-certainty evidence), on admission to hospital or death within 28 days (RR 0.94 ; 95% CI 0.57 to 1.56; 876 participants; 3 studies; low-certainty evidence), and on symptom resolution at day 14 (RR 1.03; 95% CI 0.95 to 1.12; 138 participants; 1 study; low-certainty evidence). We are uncertain whether azithromycin increases or reduces serious adverse events compared to placebo or standard of care alone (0 participants experienced serious adverse events; 454 participants; 2 studies; very low-certainty evidence). No study reported on adverse events, cardiac arrhythmias during the study period or quality of life up to 28 days. Azithromycin for the treatment of COVID-19 compared to any other antibiotics in inpatients and outpatients One study compared azithromycin to lincomycin in inpatients, but did not report any primary outcome. Another study compared azithromycin to clarithromycin in outpatients, but did not report any relevant outcome for this review. AUTHORS' CONCLUSIONS: We are certain that risk of death in hospitalised COVID-19 patients is not reduced by treatment with azithromycin after 28 days. Further, based on moderate-certainty evidence, patients in the inpatient setting with moderate and severe disease probably do not benefit from azithromycin used as potential antiviral and anti-inflammatory treatment for COVID-19 regarding clinical worsening or improvement. For the outpatient setting, there is currently low-certainty evidence that azithromycin may have no beneficial effect for COVID-19 individuals. There is no evidence from RCTs available for other antibiotics as antiviral and anti-inflammatory treatment of COVID-19. With accordance to the living approach of this review, we will continually update our search and include eligible trials to fill this evidence gap. However, in relation to the evidence for azithromycin and in the context of antimicrobial resistance, antibiotics should not be used for treatment of COVID-19 outside well-designed RCTs.


Subject(s)
COVID-19 , Anti-Bacterial Agents/adverse effects , Cause of Death , Humans , Middle Aged , Respiration, Artificial , SARS-CoV-2
15.
J Clin Epidemiol ; 141: 82-89, 2022 01.
Article in English | MEDLINE | ID: covidwho-1401588

ABSTRACT

BACKGROUND: A living systematic review (LSR) is an emerging review type that makes use of continual updating. In the COVID-19 pandemic, we were confronted with a shifting epidemiological landscape, clinical uncertainties and evolving evidence. These unexpected challenges compelled us to amend standard LSR methodology. OBJECTIVE AND OUTLINE: Our primary objective is to discuss some challenges faced when conducting LSRs in the context of the COVID-19 pandemic, and to provide methodological guidance for others doing similar work. Based on our experience and lessons learned from two Cochrane LSRs and challenges identified in several non-Cochrane LSRs, we highlight methodological considerations, particularly with regards to the study design, interventions and comparators, changes in outcome measure, and the search strategy. We discuss when to update, or rather when not to update the review, and the importance of transparency when reporting changes. LESSONS LEARNED AND CONCLUSION: We learned that a LSR is a very suitable review type for the pandemic context, even in the face of new methodological and clinical challenges. Our experience showed that the decision for updating a LSR depends not only on the evolving disease or emerging evidence, but also on the individual review question and the review teams' resources.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Research Design , Systematic Reviews as Topic
17.
Cochrane Database Syst Rev ; 7: CD015017, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1328590

ABSTRACT

BACKGROUND: Ivermectin, an antiparasitic agent used to treat parasitic infestations, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in the early stages of infection. Currently, evidence on efficacy and safety of ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES: To assess the efficacy and safety of ivermectin compared to no treatment, standard of care, placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), medRxiv, and Research Square, identifying completed and ongoing studies without language restrictions to 26 May 2021. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing ivermectin to no treatment, standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity, treated in inpatient or outpatient settings, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms.  We excluded studies comparing ivermectin to other pharmacological interventions with unproven efficacy. DATA COLLECTION AND ANALYSIS: We assessed RCTs for bias, using the Cochrane risk of bias 2 tool. The primary analysis excluded studies with high risk of bias. We used GRADE to rate the certainty of evidence for the following outcomes 1. to treat inpatients with moderate-to-severe COVID-19: mortality, clinical worsening or improvement, adverse events, quality of life, duration of hospitalization, and viral clearance; 2. to treat outpatients with mild COVID-19: mortality, clinical worsening or improvement, admission to hospital, adverse events, quality of life, and viral clearance; (3) to prevent SARS-CoV-2 infection: SARS-CoV-2 infection, development of COVID-19 symptoms, adverse events, mortality, admission to hospital, and quality of life. MAIN RESULTS: We found 14 studies with 1678 participants investigating ivermectin compared to no treatment, placebo, or standard of care. No study compared ivermectin to an intervention with proven efficacy. There were nine studies treating participants with moderate COVID-19 in inpatient settings and four treating mild COVID-19 cases in outpatient settings. One study investigated ivermectin for prevention of SARS-CoV-2 infection. Eight studies had an open-label design, six were double-blind and placebo-controlled. Of the 41 study results contributed by included studies, about one third were at overall high risk of bias.  Ivermectin doses and treatment duration varied among included studies.  We identified 31 ongoing and 18 studies awaiting classification until publication of results or clarification of inconsistencies. Ivermectin compared to placebo or standard of care for inpatient COVID-19 treatment We are uncertain whether ivermectin compared to placebo or standard of care reduces or increases mortality (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 2 studies, 185 participants; very low-certainty evidence) and clinical worsening up to day 28 assessed as need for invasive mechanical ventilation (IMV) (RR 0.55, 95% CI 0.11 to 2.59; 2 studies, 185 participants; very low-certainty evidence) or need for supplemental oxygen (0 participants required supplemental oxygen; 1 study, 45 participants; very low-certainty evidence), adverse events within 28 days (RR 1.21, 95% CI 0.50 to 2.97; 1 study, 152 participants; very low-certainty evidence), and viral clearance at day seven (RR 1.82, 95% CI 0.51 to 6.48; 2 studies, 159 participants; very low-certainty evidence). Ivermectin may have little or no effect compared to placebo or standard of care on clinical improvement up to 28 days (RR 1.03, 95% CI 0.78 to 1.35; 1 study; 73 participants; low-certainty evidence) and duration of hospitalization (mean difference (MD) -0.10 days, 95% CI -2.43 to 2.23; 1 study; 45 participants; low-certainty evidence). No study reported quality of life up to 28 days. Ivermectin compared to placebo or standard of care for outpatient COVID-19 treatment We are uncertain whether ivermectin compared to placebo or standard of care reduces or increases mortality up to 28 days (RR 0.33, 95% CI 0.01 to 8.05; 2 studies, 422 participants; very low-certainty evidence) and clinical worsening up to 14 days assessed as need for IMV (RR 2.97, 95% CI 0.12 to 72.47; 1 study, 398 participants; very low-certainty evidence) or non-IMV or high flow oxygen requirement (0 participants required non-IMV or high flow; 1 study, 398 participants; very low-certainty evidence). We are uncertain whether ivermectin compared to placebo reduces or increases viral clearance at seven days (RR 3.00, 95% CI 0.13 to 67.06; 1 study, 24 participants; low-certainty evidence). Ivermectin may have little or no effect compared to placebo or standard of care on the number of participants with symptoms resolved up to 14 days (RR 1.04, 95% CI 0.89 to 1.21; 1 study, 398 participants; low-certainty evidence) and adverse events within 28 days (RR 0.95, 95% CI 0.86 to 1.05; 2 studies, 422 participants; low-certainty evidence). None of the studies reporting duration of symptoms were eligible for primary analysis. No study reported hospital admission or quality of life up to 14 days. Ivermectin compared to no treatment for prevention of SARS-CoV-2 infection We found one study. Mortality up to 28 days was the only outcome eligible for primary analysis. We are uncertain whether ivermectin reduces or increases mortality compared to no treatment (0 participants died; 1 study, 304 participants; very low-certainty evidence). The study reported results for development of COVID-19 symptoms and adverse events up to 14 days that were included in a secondary analysis due to high risk of bias. No study reported SARS-CoV-2 infection, hospital admission, and quality of life up to 14 days. AUTHORS' CONCLUSIONS: Based on the current very low- to low-certainty evidence, we are uncertain about the efficacy and safety of ivermectin used to treat or prevent COVID-19. The completed studies are small and few are considered high quality. Several studies are underway that may produce clearer answers in review updates. Overall, the reliable evidence available does not support the use ivermectin for treatment or prevention of COVID-19 outside of well-designed randomized trials.


Subject(s)
Antiparasitic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Ivermectin/therapeutic use , Antiparasitic Agents/adverse effects , Antiviral Agents/adverse effects , COVID-19/mortality , COVID-19/prevention & control , COVID-19/virology , Cause of Death , Humans , Ivermectin/adverse effects , Placebos/therapeutic use , Post-Exposure Prophylaxis , Randomized Controlled Trials as Topic , Respiration, Artificial/statistics & numerical data , SARS-CoV-2/drug effects , Time Factors , Treatment Outcome
18.
Anasthesiol Intensivmed Notfallmed Schmerzther ; 55(4): 266-274, 2020 Apr.
Article in German | MEDLINE | ID: covidwho-50062

ABSTRACT

The most common human corona viruses cause common colds. But three of these viruses cause more serious, acute diseases; Middle East Respiratory Syndrome (MERS by MERS-CoV), Severe Acute Respiratory Syndrome (SARS) by SARS-CoV and COVID-19 by SARS-CoV-2. The current outbreak was classified by the WHO as a "global public health emergency". Despite all efforts to reduce the surgical lists and to cancel or postpone non-time-critical surgical interventions, some surgical and anesthetic interventions outside of intensive care medicine are still necessary and must be performed. This is particularly true for obstetric interventions and neuraxial labor analgesia. Workload in the delivery room is presumably not going to decrease and planned cesarean sections cannot be postponed. In the meantime, the clinical course and outcome of some COVID-19 patients with an existing pregnancy or peripartum courses have been reported. There are already numerous recommendations from national and international bodies regarding the care of such patients. Some of these recommendations will be summarized in this manuscript. The selection of aspects should by no means be seen as a form of prioritization. The general treatment principles in dealing with COVID-19 patients and the recommendations for action in intensive care therapy also apply to pregnant and postpartum patients. In this respect, there are naturally considerable redundancies and only a few aspects apply strictly or exclusively to the cohort of obstetric patients. In summary, at present it must be stated that the general care recommendations that also apply to non-COVID-19 patients are initially valid with regard to obstetric anesthesia. Nevertheless, the special requirements on the part of hygiene and infection protection result in special circumstances that should be taken into account when caring for pregnant patients from an anesthetic point of view. These relate to both medical aspects, but also to a particular extent logistics issues with regard to spatial separation, staffing and material resources.


Subject(s)
Anesthesia, Obstetrical , Betacoronavirus , Coronavirus Infections/complications , Pneumonia, Viral/complications , Pregnancy Complications, Infectious/prevention & control , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Humans , Infectious Disease Transmission, Professional-to-Patient , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pregnancy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL